Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 178: 292-300, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422682

RESUMEN

Clean up following the wide-area release of a persistent biological agent has the potential to generate significant waste. Waste containing residual levels of biological contaminants may require off-site shipment under the U.S. Department of Transportation's (US DOT) solid waste regulations for Category A infectious agents, which has packaging and size limitations that do not accommodate large quantities. Treating the waste on-site to inactivate the bio-contaminants could alleviate the need for Category A shipping and open the possibility for categorizing the waste as conventional solid waste with similar shipping requirements as municipal garbage. To collect and package waste for on-site treatment, a semi-permeable nonwoven-based fabric was developed. The fabric was designed to contain residual bio-contaminants while providing sufficient permeability for penetration by a gaseous decontamination agent. The nonwoven fabric was tested in two bench-scale experiments. First, decontamination efficacy and gas permeability were evaluated by placing test coupons inoculated with spores of a Bacillus anthracis surrogate inside the nonwoven material. After chlorine dioxide fumigation, the coupons were analyzed for spore viability and results showed a ≥6 Log reduction on all test materials except glass. Second, filters cut from the nonwoven material were tested in parallel with commercially available cellulose acetate filters having a known pore size (0.45 µm) and results demonstrate that the two materials have similar permeability characteristics. Overall, results suggest that the nonwoven material could be used to package waste at the point of generation and then moved to a nearby staging area where it could be fumigated to inactivate bio-contaminants.


Asunto(s)
Bacillus anthracis , Residuos Sólidos , Esporas Bacterianas/fisiología , Descontaminación/métodos
2.
PLoS One ; 17(9): e0272822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36125987

RESUMEN

Polar microalgae face two major challenges: 1- growing at temperatures (-1.7 to 5°C) that limit enzyme kinetics; and 2- surviving and exploiting a wide range of irradiance. The objective of this study is to understand the adaptation of an Arctic diatom to its environment by studying its ability to acclimate to changes in light and temperature. We acclimated the polar diatom Chaetoceros neogracilis to various light levels at two different temperatures and studied its growth and photosynthetic properties using semi-continuous cultures. Rubisco content was high, to compensate for low catalytic rates, but did not change detectably with growth temperature. Contrary to what is observed in temperate species, in C. neogracilis, carbon fixation rate (20 min 14C incorporation) equaled net growth rate (µ) suggesting very low or very rapid (<20 min) re-oxidation of the newly fixed carbon. The comparison of saturation irradiances for electron transport, oxygen net production and carbon fixation revealed alternative electron pathways that could provide energy and reducing power to the cell without consuming organic carbon which is a very limiting product at low temperatures. High protein contents, low re-oxidation of newly fixed carbon and the use of electron pathways alternative to carbon fixation may be important characteristics allowing efficient growth under those extreme environmental conditions.


Asunto(s)
Diatomeas , Carbono/metabolismo , Oxígeno , Ribulosa-Bifosfato Carboxilasa/metabolismo , Temperatura
3.
Front Plant Sci ; 12: 658880, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995456

RESUMEN

We investigated whether stand species mixture can attenuate the vulnerability of eastern Canada's boreal forests to climate change and insect epidemics. For this, we focused on two dominant boreal species, black spruce [Picea mariana (Mill.) BSP] and trembling aspen (Populus tremuloides Michx.), in stands dominated by black spruce or trembling aspen ("pure stands"), and mixed stands (M) composed of both species within a 36 km2 study area in the Nord-du-Québec region. For each species in each stand composition type, we tested climate-growth relations and assessed the impacts on growth by recorded insect epidemics of a black spruce defoliator, the spruce budworm (SBW) [Choristoneura fumiferana (Clem.)], and a trembling aspen defoliator, the forest tent caterpillar (FTC; Malacosoma disstria Hübn.). We implemented linear models in a Bayesian framework to explain baseline and long-term trends in tree growth for each species according to stand composition type and to differentiate the influences of climate and insect epidemics on tree growth. Overall, we found climate vulnerability was lower for black spruce in mixed stands than in pure stands, while trembling aspen was less sensitive to climate than spruce, and aspen did not present differences in responses based on stand mixture. We did not find any reduction of vulnerability for mixed stands to insect epidemics in the host species, but the non-host species in mixed stands could respond positively to epidemics affecting the host species, thus contributing to stabilize ecosystem-scale growth over time. Our findings partially support boreal forest management strategies including stand species mixture to foster forests that are resilient to climate change and insect epidemics.

4.
ACS Biomater Sci Eng ; 7(6): 2329-2336, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33852801

RESUMEN

Embedding medical and hygiene products with regenerable antimicrobial functions would have significant implications for limiting pathogen contaminations and reducing healthcare-associated infections. Herein, we demonstrate a scalable and industrially feasible methodology to fabricate chlorine rechargeable melt-blown polypropylene (PP) nonwoven fabrics, which have been widely used in hygienic and personal protective products, via a combination of a melt reactive extrusion process and melt-blown technique. Methacrylamide (MAM) was employed as a precursor of halamine monomers and covalently grafted onto the PP backbone to form polypropylene-grafted methacrylamide (PP-g-MAM), which could be chlorinated, yielding biocidal acyclic halamines. Subsequently, the resultant PP-g-MAM was manufactured into nonwoven fabrics with varying fiber diameters by adjusting the hot air flowing speed during the melt-blowing process. The chlorinated nonwoven fabrics (PP-g-MAM-Cl) exhibited integrated properties such as a robust mechanical property, good thermal stability, high chlorination capability (>850 ppm), and desirable chlorine rechargeability. More importantly, such chlorinated nonwoven fabrics showed a promising antibacterial and antiviral efficiency, achieving 6 log CFU reduction of bacteria (both Escherichia coliO157: H7 and Listeria innocua) and 7 log PFU reductions of a virus (T7 bacteriophages) within 15 and 5 min of contact, respectively, revealing great potential to serve as a reusable antimicrobial material for medical protection applications.


Asunto(s)
Antiinfecciosos , Polipropilenos , Aminas , Antibacterianos/farmacología , Antivirales , Listeria
5.
Tissue Eng Part C Methods ; 26(7): 364-374, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32552453

RESUMEN

Engineered scaffolds used to regenerate mammalian tissues should recapitulate the underlying fibrous architecture of native tissue to achieve comparable function. Current fibrous scaffold fabrication processes, such as electrospinning and three-dimensional (3D) printing, possess application-specific advantages, but they are limited either by achievable fiber sizes and pore resolution, processing efficiency, or architectural control in three dimensions. As such, a gap exists in efficiently producing clinically relevant, anatomically sized scaffolds comprising fibers in the 1-100 µm range that are highly organized. This study introduces a new high-throughput, additive fibrous scaffold fabrication process, designated in this study as 3D melt blowing (3DMB). The 3DMB system described in this study is modified from larger nonwovens manufacturing machinery to accommodate the lower volume, high-cost polymers used for tissue engineering and implantable biomedical devices and has a fiber collection component that uses adaptable robotics to create scaffolds with predetermined geometries. The fundamental process principles, system design, and key parameters are described, and two examples of the capabilities to create scaffolds for biomedical engineering applications are demonstrated. Impact statement Three-dimensional melt blowing (3DMB) is a new, high-throughput, additive manufacturing process to produce scaffolds composed of highly organized fibers in the anatomically relevant 1-100 µm range. Unlike conventional melt-blowing systems, the 3DMB process is configured for efficient use with the relatively expensive polymers necessary for biomedical applications, decreasing the required amounts of material for processing while achieving high throughputs compared with 3D printing or electrospinning. The 3DMB is demonstrated to make scaffolds composed of multiple fiber materials and organized into complex shapes, including those typical of human body parts.


Asunto(s)
Hernia/terapia , Herniorrafia/métodos , Polímeros/química , Impresión Tridimensional/instrumentación , Medicina Regenerativa , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Perros
6.
Glob Chang Biol ; 24(10): 4797-4815, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29963722

RESUMEN

The accumulation of soil carbon (C) is regulated by a complex interplay between abiotic and biotic factors. Our study aimed to identify the main drivers of soil C accumulation in the boreal forest of eastern North America. Ecosystem C pools were measured in 72 sites of fire origin that burned 2-314 years ago over a vast region with a range of ∆ mean annual temperature of 3°C and one of ∆ 500 mm total precipitation. We used a set of multivariate a priori causal hypotheses to test the influence of time since fire (TSF), climate, soil physico-chemistry and bryophyte dominance on forest soil organic C accumulation. Integrating the direct and indirect effects among abiotic and biotic variables explained as much as 50% of the full model variability. The main direct drivers of soil C stocks were: TSF >bryophyte dominance of the FH layer and metal oxide content >pH of the mineral soil. Only climate parameters related to water availability contributed significantly to explaining soil C stock variation. Importantly, climate was found to affect FH layer and mineral soil C stocks indirectly through its effects on bryophyte dominance and organo-metal complexation, respectively. Soil texture had no influence on soil C stocks. Soil C stocks increased both in the FH layer and mineral soil with TSF and this effect was linked to a decrease in pH with TSF in mineral soil. TSF thus appears to be an important factor of soil development and of C sequestration in mineral soil through its influence on soil chemistry. Overall, this work highlights that integrating the complex interplay between the main drivers of soil C stocks into mechanistic models of C dynamics could improve our ability to assess C stocks and better anticipate the response of the boreal forest to global change.


Asunto(s)
Carbono/química , Suelo/química , Taiga , Clima , Ecosistema , Incendios , Temperatura , Agua
7.
Sci Rep ; 5: 13356, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26330162

RESUMEN

Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.


Asunto(s)
Cambio Climático , Incendios , Actividades Humanas , Paleontología , Plantas , Biomasa , Canadá , Carbón Orgánico , Geografía , Humanos , Análisis de los Mínimos Cuadrados , Polen , Lluvia , Estaciones del Año , Estadísticas no Paramétricas
8.
Ecol Evol ; 5(9): 1837-53, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26140200

RESUMEN

Understory species play a significant role in forest ecosystem dynamics. As such, species of the Ericaceae family have a major effect on the regeneration of tree species in boreal ecosystems. It is thus imperative to understand the ecological gradients controlling their distribution and abundance, so that their impacts can be taken into account in sustainable forest management. Using innovative analytical techniques from landscape ecology, we aimed to position, along ecological gradients, four Ericaceae found in the boreal forest of Quebec (Canada) (Rhododendron groenlandicum, Kalmia angustifolia, Chamaedaphne calyculata, and Vaccinium spp), to regionalize these species into landscape units relevant to forest management, and to estimate the relative importance of several ecological drivers (climate, disturbances, stand attributes, and physical environment) that control the species distribution and abundance. We conducted our study in boreal Quebec, over a study area covering 535,355 km(2). We used data from 15,339 ecological survey plots and forest maps to characterize 1422 ecological districts covering the study region. We evaluated the relative proportion of each ericaceous species and explanatory variables at the district level. Vegetation and explanatory variables matrices were used to conduct redundancy, cluster, and variation partitioning analyses. We observed that ericaceous species are mainly distributed in the western part of the study area and each species has a distinct latitudinal and longitudinal gradient distribution. On the basis of these gradients, we delimited 10 homogeneous landscape units distinct in terms of ericaceous species abundance and environmental drivers. The distribution of the ericaceous species along ecological gradients is closely related to the overlaps between the four sets of explanatory variables considered. We conclude that the studied Ericaceae occupy specific positions along ecological gradients and possess a specific abundance and distribution controlled by the integration of multiple explanatory variables.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...